A Phragmén - Lindelöf principle for slice regular functions

نویسندگان

  • Graziano Gentili
  • Caterina Stoppato
  • Daniele C. Struppa
چکیده

The celebrated 100-year old Phragmén-Lindelöf theorem, [15, 16], is a far reaching extension of the maximum modulus theorem for holomorphic functions that in its simplest form can be stated as follows: Theorem 1.1. Let Ω ⊂ C be a simply connected domain whose boundary contains the point at infinity. If f is a bounded holomorphic function on Ω and lim supz→z0 |f(z)| ≤ M at each finite boundary point z0, then |f(z)| ≤ M for all z ∈ Ω.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algebraic varieties on which the classical Phragmén-Lindelöf estimates hold for plurisubharmonic functions

Algebraic varieties V are investigated on which the natural analogue of the classical Phragmén-Lindelöf principle for plurisubharmonic functions holds. For a homogeneous polynomial P in three variables it is shown that its graph has this property if and only if P has real coefficients, no elliptic factors, is locally hyperbolic in all real characteristics, and the localizations in these charact...

متن کامل

Phragmén-lindelöf Principles on Algebraic Varieties

From several results in recent years, starting with Hörmander’s characterization of the constant coefficient partial differential equations P (D)u = f that have a real analytic solution u for every real analytic function f , it has become clear that certain properties of the partial differential operator P (D) are equivalent to estimates of Phragmén–Lindelöf type for plurisubharmonic functions ...

متن کامل

Phragmén–lindelöf Theorem for Infinity Harmonic Functions

We investigate a version of the Phragmén–Lindelöf theorem for solutions of the equation ∆∞u = 0 in unbounded convex domains. The method of proof is to consider this infinity harmonic equation as the limit of the p-harmonic equation when p tends to ∞.

متن کامل

Remarks on the Phragmén-lindelöf Theorem for L-viscosity Solutions of Fully Nonlinear Pdes with Unbounded Ingredients

The Phragmén-Lindelöf theorem for Lp-viscosity solutions of fully nonlinear second order elliptic partial differential equations with unbounded coefficients and inhomogeneous terms is established.

متن کامل

Phragmén-lindelöf Alternative for the Laplace Equation with Dynamic Boundary Conditions

Abstract This paper investigates the spatial behavior of the solutions of the Laplace equation on a semi-infinite cylinder when dynamical nonlinear boundary conditions are imposed on the lateral side of the cylinder. We prove a Phragmén-Lindelöf alternative for the solutions. To be precise, we see that the solutions increase in an exponential way or they decay as a polynomial. To give a complet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009